GENERALIZED KDV EQUATION SUBJECT TO A STOCHASTIC PERTURBATION

Abstract : We prove global well-posedness of the subcritical generalized Korteweg-de Vries equation (the mKdV and the gKdV with quartic power of nonlinearity) subject to an additive random perturbation. More precisely, we prove that if the driving noise is a cylindrical Wiener process on L 2 (R) and the covariance operator is Hilbert-Schmidt in an appropriate Sobolev space, then the solutions with H 1 (R) data are globally wellposed in H 1 (R). This extends results obtained by A. de Bouard and A. Debussche for the stochastic KdV equation. Dedication: In the memory of Igor Chueshov.
Type de document :
Article dans une revue
Discrete and Continuous Dynamical Systems - Series B, American Institute of Mathematical Sciences, 2018, 23 (3), pp.1177-1198. 〈http://aimsciences.org/article/doi/10.3934/dcdsb.2018147〉. 〈10.3934/dcdsb.2018147〉
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01519175
Contributeur : Annie Millet <>
Soumis le : lundi 20 novembre 2017 - 21:48:17
Dernière modification le : mardi 19 mars 2019 - 01:23:28
Document(s) archivé(s) le : mercredi 21 février 2018 - 14:00:38

Fichier

Revised_Stochastic_gKdV_AMSR.p...
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Annie Millet, Svetlana Roudenko. GENERALIZED KDV EQUATION SUBJECT TO A STOCHASTIC PERTURBATION. Discrete and Continuous Dynamical Systems - Series B, American Institute of Mathematical Sciences, 2018, 23 (3), pp.1177-1198. 〈http://aimsciences.org/article/doi/10.3934/dcdsb.2018147〉. 〈10.3934/dcdsb.2018147〉. 〈hal-01519175v2〉

Partager

Métriques

Consultations de la notice

290

Téléchargements de fichiers

46