Knapsack problem with objective value gaps

Abstract : We study a 0-1 knapsack problem, in which the objective value is forbidden to take some values. We call gaps related forbidden intervals. The problem is NP-hard and pseudo-polynomially solvable independently on the measure of gaps. If the gaps are large, then the problem is polynomially non-approximable. A non-trivial special case with respect to the approximate solution appears when the gaps are small and polynomially close to zero. For this case, two fully polynomial time approximation schemes are proposed. The results can be extended for the constrained longest path problem and other combinatorial problems.
Type de document :
Article dans une revue
Optimization Letters, Springer Verlag, 2017, 11 (1), pp.31-39
Liste complète des métadonnées
Contributeur : Alexandre Dolgui <>
Soumis le : vendredi 13 mai 2016 - 11:27:21
Dernière modification le : vendredi 3 mars 2017 - 09:33:05
Document(s) archivé(s) le : mercredi 16 novembre 2016 - 03:24:20


Knapsack Gaps 7 March 2016.pdf
Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01315452, version 1


Alexandre Dolgui, Mikhail Y. Kovalyov, Alain Quilliot. Knapsack problem with objective value gaps. Optimization Letters, Springer Verlag, 2017, 11 (1), pp.31-39. <hal-01315452>



Consultations de
la notice


Téléchargements du document