Decomposing Cubic Graphs into Connected Subgraphs of Size Three

Abstract : Let S = {K1,3, K3, P4} be the set of connected graphs of size 3. We study the problem of partitioning the edge set of a graph G into graphs taken from any non-empty S ⊆ S. The problem is known to be NP-complete for any possible choice of S in general graphs. In this paper, we assume that the input graph is cubic, and study the computational complexity of the problem of partitioning its edge set for any choice of S. We identify all polynomial and NP-complete problems in that setting, and give graph-theoretic characterisations of S-decomposable cubic graphs in some cases.
Type de document :
Communication dans un congrès
The 22nd International Computing and Combinatorics Conference (COCOON), Aug 2016, Ho Chi Minh City, Vietnam. Proceedings of the 22nd International Computing and Combinatorics Conference (COCOON), 2016, 〈http://optnetsci.cise.ufl.edu/cocoon16/〉
Liste complète des métadonnées

Littérature citée [11 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01309152
Contributeur : Anthony Labarre <>
Soumis le : jeudi 28 avril 2016 - 22:15:39
Dernière modification le : jeudi 5 juillet 2018 - 14:45:48
Document(s) archivé(s) le : mardi 15 novembre 2016 - 17:41:39

Fichier

partitioning-cubic-graphs-arxi...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01309152, version 1

Citation

Laurent Bulteau, Guillaume Fertin, Anthony Labarre, Romeo Rizzi, Irena Rusu. Decomposing Cubic Graphs into Connected Subgraphs of Size Three. The 22nd International Computing and Combinatorics Conference (COCOON), Aug 2016, Ho Chi Minh City, Vietnam. Proceedings of the 22nd International Computing and Combinatorics Conference (COCOON), 2016, 〈http://optnetsci.cise.ufl.edu/cocoon16/〉. 〈hal-01309152〉

Partager

Métriques

Consultations de la notice

418

Téléchargements de fichiers

274