On the order modulo p of an algebraic number (for p large enough)

Abstract : Let K/Q be Galois, and let eta in K* whose conjugates are multiplicatively independent. For a prime p, unramified, prime to eta, let np be the residue degree of p and gp the number of P I p, then let o_P(eta) and o_p(eta) be the orders of eta modulo P and p, respectively. Using Frobenius automorphisms, we show that for all p>>0, some explicit divisors of p^(np)-1 cannot realize o_P(eta) nor o_p(eta), and we give a lower bound of o_p(eta). Then we obtain that, for all p>>0 such that np >1, Prob(o_p(eta)p for all p>>0 such that gp.(np-1) ≥ 2, which covers the ``limit'' cases of cubic fields with np=3 and quartic fields with np=gp=2, but not the case of quadratic fields with np=2. In the quadratic case, the natural conjecture is, on the contrary, that o_p(eta) < p for infinitely many inert p. Some computations are given with PARI programs.
Type de document :
Pré-publication, Document de travail
To appear in ``Journal de Théorie des Nombres de Bordeaux'' (2017). 2017
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-01225061
Contributeur : Georges Gras <>
Soumis le : vendredi 31 mars 2017 - 14:17:18
Dernière modification le : mardi 4 avril 2017 - 01:02:33

Fichiers

order.mod.p-Hal.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Georges Gras. On the order modulo p of an algebraic number (for p large enough). To appear in ``Journal de Théorie des Nombres de Bordeaux'' (2017). 2017. <hal-01225061v2>

Partager

Métriques

Consultations de
la notice

56

Téléchargements du document

10