Digital Geometry from a Geometric Algebra Perspective

Lilian Aveneau 1 Fuchs Laurent 1 Andres Eric 1
1 XLIM-SIC - SIC
Université de Poitiers, XLIM - XLIM
Abstract : To model Euclidean spaces in computerized geometric calcu- lations, the Geometric Algebra framework is becoming popular in com- puter vision, image analysis, etc. Focusing on the Conformal Geometric Algebra, the claim of the paper is that this framework is useful in digital geometry too. To illustrate this, this paper shows how the Conformal Ge- ometric Algebra allow to simplify the description of digital objects, such as k-dimensional circles in any n-dimensional discrete space. Moreover, the notion of duality is an inherent part of the Geometric Algebra. This is particularly useful since many algorithms are based on this notion in digital geometry. We illustrate this important aspect with the definition of k-dimensional spheres.
Type de document :
Communication dans un congrès
18th IAPR International Conference on Discrete Geometry for Computer Imagery, Sep 2014, Siena, Italy. 2014, 〈http://www.dgci-conference.org〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01155357
Contributeur : Lilian Aveneau <>
Soumis le : mardi 26 mai 2015 - 15:02:04
Dernière modification le : lundi 25 janvier 2016 - 17:44:06

Identifiants

  • HAL Id : hal-01155357, version 1

Collections

Citation

Lilian Aveneau, Fuchs Laurent, Andres Eric. Digital Geometry from a Geometric Algebra Perspective. 18th IAPR International Conference on Discrete Geometry for Computer Imagery, Sep 2014, Siena, Italy. 2014, 〈http://www.dgci-conference.org〉. 〈hal-01155357〉

Partager

Métriques

Consultations de la notice

196