ABOUT THE CONVOLUTION OF DISTRIBUTIONS ON GROUPOIDS

Abstract : We review the properties of transversality of distributions with respect to submersions. This allows us to construct a convolution product for a large class of distributions on Lie groupoids. We get a unital involutive algebra $\cE_{r,s}'(G,\Omega^{1/2})$ enlarging the convolution algebra $C^\infty_c(G,\Omega^{1/2})$ associated with any Lie groupoid $G$. We prove that $G$-operators are convolution operators by transversal distributions. We also investigate the microlocal aspects of the convolution product. We give conditions on wave front sets sufficient to compute the convolution product and we show that the wave front set of the convolution product of two distributions is essentially the product of their wave front sets in the symplectic groupoid $T^*G$ of Coste-Dazord-Weinstein. This also leads to a subalgebra $\cE_{a}'(G,\Omega^{1/2})$ of $\cE_{r,s}'(G,\Omega^{1/2})$ which contains for instance the algebra of pseudodifferential $G$-operators and a class of Fourier integral $G$-operators which will be the central theme of a forthcoming paper.
Complete list of metadatas

Cited literature [30 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-01113881
Contributor : Jean-Marie Lescure <>
Submitted on : Wednesday, November 27, 2019 - 9:20:29 AM
Last modification on : Friday, November 29, 2019 - 2:30:08 AM

File

CODIGRO_v5.pdf
Files produced by the author(s)

Identifiers

Citation

Jean-Marie Lescure, Dominique Manchon, Stéphane Vassout. ABOUT THE CONVOLUTION OF DISTRIBUTIONS ON GROUPOIDS. Journal of Noncommutative Geometry, European Mathematical Society, 2017, 11 (2), pp.757-789. ⟨10.4171/JNCG/11-2-10⟩. ⟨hal-01113881v4⟩

Share

Metrics

Record views

30

Files downloads

24