Quantifying uncertainty on Pareto fronts with Gaussian Process conditional simulations

Abstract : Multi-objective optimization algorithms aim at finding Pareto-optimal solutions. Recovering Pareto fronts or Pareto sets from a limited number of function evaluations are challenging problems. A popular approach in the case of expensive-to-evaluate functions is to appeal to metamodels. Kriging has been shown efficient as a base for sequential multi-objective optimization, notably through infill sampling criteria balancing exploitation and exploration such as the Expected Hypervolume Improvement. Here we consider kriging metamodels not only for selecting new points, but as a tool for estimating the whole Pareto front and quantifying how much uncertainty remains on it at any stage of Kriging-based multi-objective optimization algorithms. Our approach relies on the Gaussian Process interpretation of Kriging, and bases upon conditional simulations. Using concepts from random set theory, we propose to adapt the Vorob'ev expectation and deviation to capture the variability of the set of non-dominated points. Numerical experiments illustrate the potential of the proposed workflow, and it is shown on examples how Gaussian process simulations and the estimated Vorob'ev deviation can be used to monitor the ability of kriging-based multi-objective optimization algorithms to accurately learn the Pareto front.
Liste complète des métadonnées

Littérature citée [40 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00904811
Contributeur : Mickaël Binois <>
Soumis le : mercredi 27 août 2014 - 15:25:53
Dernière modification le : mardi 23 octobre 2018 - 14:36:09
Document(s) archivé(s) le : vendredi 28 novembre 2014 - 10:40:14

Fichier

PaperEjor_Halv2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Mickaël Binois, David Ginsbourger, Olivier Roustant. Quantifying uncertainty on Pareto fronts with Gaussian Process conditional simulations. European Journal of Operational Research, Elsevier, 2015, 243 (2), pp.386-394. 〈http://www.sciencedirect.com/science/article/pii/S0377221714005980〉. 〈10.1016/j.ejor.2014.07.032〉. 〈hal-00904811v2〉

Partager

Métriques

Consultations de la notice

701

Téléchargements de fichiers

824