Concentration Bounds for Stochastic Approximations

Abstract : We obtain non asymptotic concentration bounds for two kinds of stochastic approximations. We first consider the deviations between the expectation of a given function of the Euler scheme of some diffusion process at a fixed deterministic time and its empirical mean obtained by the Monte-Carlo procedure. We then give some estimates concerning the deviation between the value at a given time-step of a stochastic approximation algorithm and its target. Under suitable assumptions both concentration bounds turn out to be Gaussian. The key tool consists in exploiting accurately the concentration properties of the increments of the schemes. For the first case, as opposed to the previous work of Lemaire and Menozzi (EJP, 2010), we do not have any systematic bias in our estimates. Also, no specific non-degeneracy conditions are assumed.
Type de document :
Article dans une revue
Electronic Communications in Probability, Institute of Mathematical Statistics (IMS), 2012, 17 (47), 15p. 〈https://projecteuclid.org/euclid.ecp/1465263180〉
Liste complète des métadonnées

Littérature citée [13 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00688165
Contributeur : Stephane Menozzi <>
Soumis le : lundi 10 décembre 2012 - 14:36:10
Dernière modification le : lundi 29 mai 2017 - 14:22:15
Document(s) archivé(s) le : lundi 11 mars 2013 - 12:30:38

Fichiers

47.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00688165, version 3
  • ARXIV : 1204.3730

Collections

INSMI | UPMC | USPC | PMA

Citation

Noufel Frikha, Stephane Menozzi. Concentration Bounds for Stochastic Approximations. Electronic Communications in Probability, Institute of Mathematical Statistics (IMS), 2012, 17 (47), 15p. 〈https://projecteuclid.org/euclid.ecp/1465263180〉. 〈hal-00688165v3〉

Partager

Métriques

Consultations de la notice

239

Téléchargements de fichiers

77