On the S-labeling Problem

Abstract : Let G be a graph of order n and size m. A labeling of G is a bijective mapping theta : V(G) --> 1, 2...n, and we call Theta(G) the set of all labelings of G. For any graph G and any labeling theta in Theta(G), let SL(G,theta) = sum_{ e in E(G)} min(theta(u) : u \in e). In this paper, we consider the S-Labeling problem, defined as follows: Given a graph G, and a labeling (G) that minimizes SL(G,Theta). The S-Labeling problem has been shown to be NP-complete [Via06]. We prove here basic properties of any optimal S-labeling of a graph G, and relate it to the Vertex Cover problem. Then, we derive bounds for SL(G,Theta), and we give approximation ratios for different families of graphs. We nally show that the S-Labeling problem is polynomial-time solvable for split graphs.
Type de document :
Communication dans un congrès
Eslevier. Proc. 5th Euroconference on Combinatorics, Graph Theory and Applications (EUROCOMB 2009), 2009, Bordeaux, France. Eslevier, 34, pp.273-277, 2009, Electronic Notes on Discrete Mathematics
Liste complète des métadonnées

Littérature citée [2 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00416570
Contributeur : Guillaume Fertin <>
Soumis le : mardi 15 septembre 2009 - 10:22:46
Dernière modification le : mercredi 23 mai 2018 - 15:44:02
Document(s) archivé(s) le : mardi 16 octobre 2012 - 10:55:08

Fichier

EUROCOMB09.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00416570, version 1

Citation

Guillaume Fertin, Stéphane Vialette. On the S-labeling Problem. Eslevier. Proc. 5th Euroconference on Combinatorics, Graph Theory and Applications (EUROCOMB 2009), 2009, Bordeaux, France. Eslevier, 34, pp.273-277, 2009, Electronic Notes on Discrete Mathematics. 〈hal-00416570〉

Partager

Métriques

Consultations de la notice

279

Téléchargements de fichiers

106