Maximum Motif Problem in Vertex-Colored Graphs

Abstract : Searching for motifs in graphs has become a crucial problem in the analysis of biological networks. In this context, different graph motif problems have been considered [12, 6, 4]. Pursuing a line of research pioneered by Lacroix et al. [12], we introduce in this paper a new graph motif problem: given a vertex colored graph G and a motif M, where a motif is a multiset of colors, find a maximum cardinality submotif M' included in M that occurs as a connected motif in G. We prove that the problem is APX-hard even in the case where the target graph is a tree of maximum degree 3, the motif is actually a set and each color occurs at most twice in the tree. We complement these results by presenting two fixed-parameter algorithms for the problem, where the parameter is the size of the solution. Finally, we give exact efficient exponential-time algorithms for the problem.
Type de document :
Communication dans un congrès
20th Annual Symposium on Combinatorial Pattern Matching (CPM 2009), 2009, Lille, France. Springer-Verlag, 5577, pp.221-235, 2009, Lecture Notes in Computer Science. 〈10.1007/978-3-642-02441-2_20〉
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00416463
Contributeur : Guillaume Fertin <>
Soumis le : lundi 14 septembre 2009 - 12:02:28
Dernière modification le : mercredi 23 mai 2018 - 15:44:02
Document(s) archivé(s) le : mardi 16 octobre 2012 - 10:51:51

Fichier

CPM2009_Paper.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Riccardo Dondi, Guillaume Fertin, Stéphane Vialette. Maximum Motif Problem in Vertex-Colored Graphs. 20th Annual Symposium on Combinatorial Pattern Matching (CPM 2009), 2009, Lille, France. Springer-Verlag, 5577, pp.221-235, 2009, Lecture Notes in Computer Science. 〈10.1007/978-3-642-02441-2_20〉. 〈hal-00416463〉

Partager

Métriques

Consultations de la notice

392

Téléchargements de fichiers

206