Effects of Dynamical Decoupling and Pulse-Level Optimizations on IBM Quantum Computers - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue IEEE Transactions on Quantum Engineering Année : 2022

Effects of Dynamical Decoupling and Pulse-Level Optimizations on IBM Quantum Computers

Siyuan Niu
Aida Todri-Sanial

Résumé

Currently available quantum computers are prone to errors. Circuit optimization and error mitigation methods are needed to design quantum circuits to achieve better fidelity when executed on NISQ hardware. Dynamical decoupling (DD) is generally used to suppress the decoherence error, and different DD strategies have been proposed. Moreover, the circuit fidelity can be improved by pulse-level optimization, such as creating hardware-native pulse-efficient gates. This article implements all the popular DD sequences and evaluates their performances on IBM quantum chips with different characteristics for various well-known quantum applications. Also, we investigate combining DD with the pulse-level optimization method and apply them to QAOA to solve the max-cut problem. Based on the experimental results, we find that DD can be a benefit for only certain types of quantum algorithms, while the combination of DD and pulse-level optimization methods always has a positive impact. Finally, we provide several guidelines for users to learn how to use these noise mitigation methods to build circuits for quantum applications with high fidelity on IBM quantum computers.
Fichier principal
Vignette du fichier
2204.01471.pdf (765.66 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03645284 , version 1 (17-10-2023)

Identifiants

Citer

Siyuan Niu, Aida Todri-Sanial. Effects of Dynamical Decoupling and Pulse-Level Optimizations on IBM Quantum Computers. IEEE Transactions on Quantum Engineering, 2022, 3 (3102510), pp.1-10. ⟨10.1109/TQE.2022.3203153⟩. ⟨hal-03645284⟩
81 Consultations
4 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More