Direct measurement of individual phonon lifetimes in the clathrate compound Ba$_{7.81}$Ge$_{40.67}$Au$_{5.33}$ - Archive ouverte HAL Access content directly
Journal Articles Nature Communications Year : 2017

Direct measurement of individual phonon lifetimes in the clathrate compound Ba$_{7.81}$Ge$_{40.67}$Au$_{5.33}$

Yvan Sidis
  • Function : Author
  • PersonId : 1022450

Abstract

An Engineering lattice thermal conductivity requires to control the heat carried by atomic vibration waves, the phonons. The key parameter for quantifying it is the phonon lifetime, limiting the travelling distance, whose determination is however at the limits of instrumental capabilities. Here, we show the achievement of a direct quantitative measurement of phonon lifetimes in a single crystal of the clathrate Ba7.81Ge40.67Au5.33, renowned for its puzzling ‘glass-like’ thermal conductivity. Surprisingly, thermal transport is dominated by acoustic phonons with long lifetimes, travelling over distances of 10 to 100 nm as their wave-vector goes from 0.3 to 0.1 Å−1. Considering only low-energy acoustic phonons, and their observed lifetime, leads to a calculated thermal conductivity very close to the experimental one. Our results challenge the current picture of thermal transport in clathrates, underlining the inability of state-of-the-art simulations to reproduce the experimental data, thus representing a crucial experimental input for theoretical developments
Fichier principal
Vignette du fichier
BAG-NatComm.pdf (2.08 Mo) Télécharger le fichier
Origin : Publisher files allowed on an open archive
Loading...

Dates and versions

hal-02456929 , version 1 (27-01-2020)

Identifiers

Cite

Pierre-François Lory, Stéphane Pailhes, Valentina M. Giordano, Holger Euchner, Hong Duong Nguyen, et al.. Direct measurement of individual phonon lifetimes in the clathrate compound Ba$_{7.81}$Ge$_{40.67}$Au$_{5.33}$. Nature Communications, 2017, 8, pp.491. ⟨10.1038/s41467-017-00584-7⟩. ⟨hal-02456929⟩
346 View
90 Download

Altmetric

Share

Gmail Facebook X LinkedIn More