Optimal Multivariate Gaussian Fitting with Applications to PSF Modeling in Two-Photon Microscopy Imaging - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Journal of Mathematical Imaging and Vision Année : 2019

Optimal Multivariate Gaussian Fitting with Applications to PSF Modeling in Two-Photon Microscopy Imaging

Résumé

Fitting Gaussian functions to empirical data is a crucial task in a variety of scientific applications, especially in image processing. However, most of the existing approaches for performing such fitting are restricted to two dimensions and they cannot be easily extended to higher dimensions. Moreover, they are usually based on alternating minimization schemes which benefit from few theoretical guarantees in the underlying nonconvex setting. In this paper , we provide a novel variational formulation of the multi-variate Gaussian fitting problem, which is applicable to any dimension and accounts for possible non-zero background and noise in the input data. The block multiconvexity of our objective function leads us to propose a proximal alternating method to minimize it in order to estimate the Gaus-sian shape parameters. The resulting FIGARO algorithm is shown to converge to a critical point under mild assumptions. The algorithm shows a good robustness when tested on synthetic datasets. To demonstrate the versatility of FIGARO, we also illustrate its excellent performance in the fitting of the Point Spread Functions of experimental raw data from a two-photon fluorescence microscope.
Fichier principal
Vignette du fichier
main_jmiv.pdf (3.57 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01985663 , version 1 (18-01-2019)

Identifiants

Citer

Emilie Chouzenoux, Tim Tsz-Kit Lau, Claire Lefort, Jean-Christophe Pesquet. Optimal Multivariate Gaussian Fitting with Applications to PSF Modeling in Two-Photon Microscopy Imaging. Journal of Mathematical Imaging and Vision, 2019, 61 (7), pp.1037-1050. ⟨10.1007/s10851-019-00884-1⟩. ⟨hal-01985663⟩
223 Consultations
578 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More