Minimal realizations of nonlinear systems

Abstract : The nonlinear realization theory is recasted for time-varying single-input single-output nonlinear systems. The concept of realization has been extended to cover also the realizations with order greater than the order of input–output equation. The minimal realization problem is studied. The state realization is said to be minimal if it is either accessible and observable or its state dimension is minimal. In the linear case the two definitions are equivalent, but not for nonlinear time-invariant systems. It is shown that the two definitions remain equivalent for nonlinear systems under certain technical assumptions. Two alternative methods are presented for finding the minimal realization.
Type de document :
Article dans une revue
Automatica, Elsevier, 2018, 95, pp.207 - 212. 〈10.1016/j.automatica.2018.05.007〉
Liste complète des métadonnées
Contributeur : Claude Moog <>
Soumis le : mardi 11 septembre 2018 - 13:57:44
Dernière modification le : mardi 26 mars 2019 - 09:25:22



Ülle Kotta, Claude Moog, Maris Tõnso. Minimal realizations of nonlinear systems. Automatica, Elsevier, 2018, 95, pp.207 - 212. 〈10.1016/j.automatica.2018.05.007〉. 〈hal-01867149〉



Consultations de la notice