Rayleigh quotient minimization for absolutely one-homogeneous functionals

Abstract : In this paper we examine the problem of minimizing generalized Rayleigh quotients of the form J(u)/H(u), where both J and H are absolutely one-homogeneous functionals. This can be viewed as minimizing J where the solution is constrained to be on a generalized sphere with H(u) = 1, where H is any norm or semi-norm. The solution admits a nonlinear eigenvalue problem, based on the subgradients of J and H. We examine several flows which minimize the ratio. This is done both by time-continuous flow formulations and by discrete iterations. We focus on a certain flow, which is easier to analyze theoretically, following the theory of Brezis on flows with maximal monotone operators. A comprehensive theory is established, including convergence of the flow. We then turn into a more specific case of minimizing graph total variation on the L1 sphere, which approximates the Cheeger-cut problem. Experimental results show the applicability of such algorithms for clustering and classification of images.
Type de document :
Pré-publication, Document de travail
2018
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01864129
Contributeur : Jean-François Aujol <>
Soumis le : jeudi 30 août 2018 - 18:16:08
Dernière modification le : samedi 1 septembre 2018 - 01:06:56

Fichier

hal-rayleigh.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01864129, version 2

Collections

IMB

Citation

Tal Feld, Jean-François Aujol, Guy Gilboa, Nicolas Papadakis. Rayleigh quotient minimization for absolutely one-homogeneous functionals. 2018. 〈hal-01864129v2〉

Partager

Métriques

Consultations de la notice

86

Téléchargements de fichiers

75