Skip to Main content Skip to Navigation
Journal articles

Statistical modeling of spatial big data: An approach from a functional data analysis perspective

Ramón Giraldo 1 Sophie Dabo-Niang 2, 3 Sergio Martinez 4
2 MODAL - MOdel for Data Analysis and Learning
LPP - Laboratoire Paul Painlevé - UMR 8524, Université de Lille, Sciences et Technologies, Inria Lille - Nord Europe, CERIM - Santé publique : épidémiologie et qualité des soins-EA 2694, Polytech Lille - École polytechnique universitaire de Lille
Abstract : A literature review on spatial big data analysis is given. We show an application of Universal Kriging to a massive spatial dataset. We also present some perspectives of future work in this field.
Complete list of metadatas

Cited literature [29 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-01744181
Contributor : Marion Romo <>
Submitted on : Thursday, November 22, 2018 - 4:02:08 PM
Last modification on : Wednesday, September 18, 2019 - 9:42:09 AM
Document(s) archivé(s) le : Saturday, February 23, 2019 - 2:51:16 PM

File

Giraldo2018.pdf
Files produced by the author(s)

Identifiers

Citation

Ramón Giraldo, Sophie Dabo-Niang, Sergio Martinez. Statistical modeling of spatial big data: An approach from a functional data analysis perspective. Statistics and Probability Letters, Elsevier, 2018, 136, pp.126-129. ⟨10.1016/j.spl.2018.02.025⟩. ⟨hal-01744181⟩

Share

Metrics

Record views

501

Files downloads

658