Self-synchronization and Self-stabilization of 3D Bipedal Walking Gaits

Abstract : —This paper seeks insight into stabilization mechanisms for periodic walking gaits in 3D bipedal robots. Based on this insight, a control strategy based on virtual constraints, which imposes coordination between joints rather than a temporal evolution, will be proposed for achieving asymptotic convergence toward a periodic motion. For planar bipeds with one degree of underactuation, it is known that a vertical displacement of the center of mass—with downward velocity at the step transition— induces stability of a walking gait. This paper concerns the qualitative extension of this type of property to 3D walking with two degrees of underactuation. It is shown that a condition on the position of the center of mass in the horizontal plane at the transition between steps induces synchronization between the motions in the sagittal and frontal planes. A combination of the conditions for self-synchronization and vertical oscillations leads to stable gaits. The algorithm for self-stabilization of 3D walking gaits is first developed for a simplified model of a walking robot (an inverted pendulum with variable length legs), and then it is extended to a complex model of the humanoid robot Romeo using the notion of Hybrid Zero Dynamics. Simulations of the model of the robot illustrate the efficacy of the method and its robustness.
Type de document :
Article dans une revue
Robotics and Autonomous Systems, Elsevier, 2018, 100, pp.43 - 60. 〈10.1016/J.ROBOT.2017.10.018〉
Liste complète des métadonnées

Littérature citée [34 références]  Voir  Masquer  Télécharger
Contributeur : Christine Chevallereau <>
Soumis le : vendredi 5 janvier 2018 - 12:02:56
Dernière modification le : jeudi 19 avril 2018 - 11:46:06
Document(s) archivé(s) le : vendredi 4 mai 2018 - 18:15:15


Fichiers produits par l'(les) auteur(s)




Christine Chevallereau, Hamed Razavi, Damien Six, Yannick Aoustin, Jessy Grizzle. Self-synchronization and Self-stabilization of 3D Bipedal Walking Gaits. Robotics and Autonomous Systems, Elsevier, 2018, 100, pp.43 - 60. 〈10.1016/J.ROBOT.2017.10.018〉. 〈hal-01676223〉



Consultations de la notice


Téléchargements de fichiers