Estimates of solutions of elliptic equations with a source reaction term involving the product of the function and its gradient

Abstract : We study local and global properties of positive solutions of $-{\Delta}u=u^p]{\left |{\nabla u}\right |}^q$ in a domain ${\Omega}$ of ${\mathbb R}^N$, in the range $1<p+q$, $p\geq 0$, $0\leq q< 2$. We first prove a local Harnack inequality and nonexistence of positive solutions in ${\mathbb R}^N$ when $p(N-2)+q(N-1) <N$ or in an exterior domain if $p(N-2)+q(N-1)<N$ and $0\leq q<1$. Using a direct Bernstein method we obtain a first range of values of $p$ and $q$ in which $u(x)\leq c({\mathrm dist\,}(x,\partial\Omega)^{\frac{q-2}{p+q-1}}$ This holds in particular if $p+q<1+\frac{4}{n-1}$. Using an integral Bernstein method we obtain a wider range of values of $p$ and $q$ in which all the global solutions are constants. Our result contains Gidas and Spruck nonexistence result as a particular case. We also study solutions under the form $u(x)=r^{\frac{q-2}{p+q-1}}\omega(\sigma)$. We prove existence, nonexistence and rigidity of the spherical component $\omega$ in some range of values of $N$, $p$ and $q$.
Document type :
Journal articles
Complete list of metadatas

Cited literature [5 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-01651511
Contributor : Laurent Veron <>
Submitted on : Saturday, December 15, 2018 - 11:20:45 PM
Last modification on : Tuesday, July 9, 2019 - 11:54:56 AM

Files

curves-v55.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-01651511, version 3
  • ARXIV : 1711.11489

Collections

Citation

Marie-Françoise Bidaut-Veron, Marta Garcia-Huidobro, Laurent Veron. Estimates of solutions of elliptic equations with a source reaction term involving the product of the function and its gradient. Duke Mathematical Journal, Duke University Press, 2019, 168 (8), pp.1487-1537. ⟨hal-01651511v3⟩

Share

Metrics

Record views

114

Files downloads

83