Hypercyclic subsets

Abstract : We completely characterize the finite dimensional subsets A of any separable Hilbert space for which the notion of A-hypercyclicity coincides with the notion of hypercyclicity, where an operator T on a topological vector space X is said to be A-hypercyclic if the set {T n x, n ≥ 0, x ∈ A} is dense in X. We give a partial description for non necessarily finite dimensional subsets. We also characterize the finite dimensional subsets A of any separable Hilbert space H for which the somewhere density in H of {T n x, n ≥ 0, x ∈ A} implies the hypercyclicity of T. We provide a partial description for infinite dimensional subsets. These improve results of Costakis and Peris, Bourdon and Feldman, and Charpentier, Ernst and Menet, and answer a number of related open questions.
Type de document :
Pré-publication, Document de travail
2018
Liste complète des métadonnées

Littérature citée [9 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01651264
Contributeur : Romuald Ernst <>
Soumis le : mardi 14 août 2018 - 17:22:50
Dernière modification le : vendredi 17 août 2018 - 01:11:43

Fichiers

Charp-Ernst-hypercyclic-subset...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01651264, version 4
  • ARXIV : 1711.10932

Citation

S. Charpentier, R. Ernst. Hypercyclic subsets. 2018. 〈hal-01651264v4〉

Partager

Métriques

Consultations de la notice

36

Téléchargements de fichiers

13