Theorems and open problems that concern decidable sets X⊆N and cannot be formalized in mathematics understood as an a priori science as they refer to the current knowledge on X - Archive ouverte HAL Accéder directement au contenu
Pré-Publication, Document De Travail Année : 2021

Theorems and open problems that concern decidable sets X⊆N and cannot be formalized in mathematics understood as an a priori science as they refer to the current knowledge on X

Résumé

Algorithms always terminate. We explain the distinction between existing algorithms (i.e. algorithms whose existence is provable in ZFC) and known algorithms (i.e. algorithms whose definition is constructive and currently known). Assuming that the infiniteness of a set X⊆N is false or unproven, we define which elements of X are classified as known. No known set X⊆N satisfies Conditions (1)-(4) and is widely known in number theory or naturally defined, where this term has only informal meaning. *** (1) A known algorithm with no input returns an integer n satisfying card(X)<ω ⇒ X⊆(-∞,n]. (2) A known algorithm for every k∈N decides whether or not k∈X. (3) No known algorithm with no input returns the logical value of the statement card(X)=ω. (4) There are many elements of X and it is conjectured, though so far unproven, that X is infinite. (5) X is naturally defined. The infiniteness of X is false or unproven. X has the simplest definition among known sets Y⊆N with the same set of known elements. *** We define a set X⊆N which satisfies Conditions (1)-(5) except the requirement that X is naturally defined. Let P(n^2+1) denote the set of primes of the form n^2+1. We present a new heuristic argument for the infiniteness of P(n^2+1). Conditions (2)-(5) hold for X=P(n^2+1). We discuss a conjecture which implies the conjunction of Conditions (1)-(5) for X=P(n^2+1). No set X⊆ N will satisfy Conditions (1)-(4) forever, if for every algorithm with no input, at some future day, a computer will be able to execute this algorithm in 1 second or less. The physical limits of computation disprove this assumption. We present a table that shows satisfiable conjunctions consisting of Conditions (1)-(5) and their negations.
Fichier principal
Vignette du fichier
ak_at_dec1.pdf (212.17 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01614087 , version 1 (10-10-2017)
hal-01614087 , version 2 (26-11-2017)
hal-01614087 , version 3 (18-12-2017)
hal-01614087 , version 4 (19-03-2018)
hal-01614087 , version 5 (24-03-2018)
hal-01614087 , version 6 (30-10-2018)
hal-01614087 , version 7 (08-01-2019)
hal-01614087 , version 8 (19-06-2020)
hal-01614087 , version 9 (19-07-2020)
hal-01614087 , version 10 (23-07-2020)
hal-01614087 , version 11 (25-08-2020)
hal-01614087 , version 12 (15-09-2020)
hal-01614087 , version 13 (05-10-2020)
hal-01614087 , version 14 (12-10-2020)
hal-01614087 , version 15 (19-10-2020)
hal-01614087 , version 16 (10-12-2020)
hal-01614087 , version 17 (31-12-2020)
hal-01614087 , version 18 (13-01-2021)
hal-01614087 , version 19 (02-02-2021)
hal-01614087 , version 20 (03-03-2021)
hal-01614087 , version 21 (10-03-2021)
hal-01614087 , version 22 (22-10-2021)
hal-01614087 , version 23 (17-11-2021)
hal-01614087 , version 24 (01-12-2021)
hal-01614087 , version 25 (08-12-2021)
hal-01614087 , version 26 (05-01-2022)
hal-01614087 , version 27 (17-02-2022)
hal-01614087 , version 28 (28-02-2022)
hal-01614087 , version 29 (19-07-2022)
hal-01614087 , version 30 (17-08-2022)
hal-01614087 , version 31 (06-09-2022)
hal-01614087 , version 32 (08-11-2022)
hal-01614087 , version 33 (31-08-2023)
hal-01614087 , version 34 (20-09-2023)

Identifiants

  • HAL Id : hal-01614087 , version 24

Citer

Agnieszka Kozdęba, Apoloniusz Tyszka. Theorems and open problems that concern decidable sets X⊆N and cannot be formalized in mathematics understood as an a priori science as they refer to the current knowledge on X. 2021. ⟨hal-01614087v24⟩
1578 Consultations
1309 Téléchargements

Partager

Gmail Facebook X LinkedIn More