On sets X \subseteq N whose finiteness implies that we know an algorithm which for every n \in N decides the inequality max(X)<n - Archive ouverte HAL Accéder directement au contenu
Pré-Publication, Document De Travail Année : 2019

On sets X \subseteq N whose finiteness implies that we know an algorithm which for every n \in N decides the inequality max(X)

Apoloniusz Tyszka
  • Fonction : Auteur
  • PersonId : 1020366

Résumé

Let Γ_{n}(k) denote (k−1)!, where n∈{3,…,16} and k \in {2} \cup [2^{2^{n-3}}+1,\infty) \cap N. For an integer n∈{3,…,16}, let Σ_n denote the following statement: if a system of equations S⊆{Γ_{n}(x_i)=x_k: i,k∈{1,…,n}}∪{x_i⋅x_j=x_k: i,j,k∈{1,…,n}} with \Gamma instead of \Gamma_{n} has only finitely many solutions in positive integers x_1,...,x_n, then every tuple (x_1,...,x_n) \in (N\{0})^n that solves the original system S satisfies x_1,...,x_n \leq 2^{2^{n-2}}. Our hypothesis claims that the statements \Sigma_{3},...,\Sigma_{16} are true.The statement Σ_6 proves the following implication: if the equation x(x+1)=y! has only finitely many solutions in positive integers x and y, then each such solution (x,y) belongs to the set {(1,2),(2,3)}. The statement Σ_6 proves the following implication: if the equation x!+1=y^2 has only finitely many solutions in positive integers x and y, then each such solution (x,y) belongs to the set {(4,5),(5,11),(7,71)}. The statement Σ_9 implies the infinitude of primes of the form n^2+1. The statement Σ_9 implies that any prime of the form n!+1 with n⩾2^{2^{9−3}} proves the infinitude of primes of the form n!+1. The statement Σ_{14} implies the infinitude of twin primes. The statement Σ_{16} implies the infinitude of Sophie Germain primes.
Fichier principal
Vignette du fichier
14sections.pdf (689.75 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01614087 , version 1 (10-10-2017)
hal-01614087 , version 2 (26-11-2017)
hal-01614087 , version 3 (18-12-2017)
hal-01614087 , version 4 (19-03-2018)
hal-01614087 , version 5 (24-03-2018)
hal-01614087 , version 6 (30-10-2018)
hal-01614087 , version 7 (08-01-2019)
hal-01614087 , version 8 (19-06-2020)
hal-01614087 , version 9 (19-07-2020)
hal-01614087 , version 10 (23-07-2020)
hal-01614087 , version 11 (25-08-2020)
hal-01614087 , version 12 (15-09-2020)
hal-01614087 , version 13 (05-10-2020)
hal-01614087 , version 14 (12-10-2020)
hal-01614087 , version 15 (19-10-2020)
hal-01614087 , version 16 (10-12-2020)
hal-01614087 , version 17 (31-12-2020)
hal-01614087 , version 18 (13-01-2021)
hal-01614087 , version 19 (02-02-2021)
hal-01614087 , version 20 (03-03-2021)
hal-01614087 , version 21 (10-03-2021)
hal-01614087 , version 22 (22-10-2021)
hal-01614087 , version 23 (17-11-2021)
hal-01614087 , version 24 (01-12-2021)
hal-01614087 , version 25 (08-12-2021)
hal-01614087 , version 26 (05-01-2022)
hal-01614087 , version 27 (17-02-2022)
hal-01614087 , version 28 (28-02-2022)
hal-01614087 , version 29 (19-07-2022)
hal-01614087 , version 30 (17-08-2022)
hal-01614087 , version 31 (06-09-2022)
hal-01614087 , version 32 (08-11-2022)
hal-01614087 , version 33 (31-08-2023)
hal-01614087 , version 34 (20-09-2023)

Identifiants

  • HAL Id : hal-01614087 , version 7

Citer

Apoloniusz Tyszka. On sets X \subseteq N whose finiteness implies that we know an algorithm which for every n \in N decides the inequality max(X)⟨hal-01614087v7⟩
1577 Consultations
1308 Téléchargements

Partager

Gmail Facebook X LinkedIn More