Classification of the Bounds on the Probability of Ruin for Lévy Processes with Light-tailed Jumps

Abstract : In this note, we study the ultimate ruin probabilities of a real-valued Lévy process X with light-tailed negative jumps. It is well-known that, for such Lévy processes, the probability of ruin decreases as an exponential function with a rate given by the root of the Laplace exponent, when the initial value goes to infinity. Under the additional assumption that X has integrable positive jumps, we show how a finer analysis of the Laplace exponent gives in fact a complete description of the bounds on the probability of ruin for this class of Lévy processes. This leads to the identification of a case that is not considered in the literature and for which we give an example. We then apply the result to various risk models and in particular the Cramér-Lundberg model perturbed by Brownian motion.
Type de document :
Pré-publication, Document de travail
2018
Liste complète des métadonnées

Littérature citée [10 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01597828
Contributeur : Jerome Spielmann <>
Soumis le : jeudi 22 février 2018 - 17:34:06
Dernière modification le : lundi 26 février 2018 - 13:53:15
Document(s) archivé(s) le : mercredi 23 mai 2018 - 15:00:42

Fichiers

angers_lighttailedlevy.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01597828, version 2
  • ARXIV : 1709.10295

Collections

Citation

Jérôme Spielmann. Classification of the Bounds on the Probability of Ruin for Lévy Processes with Light-tailed Jumps. 2018. 〈hal-01597828v2〉

Partager

Métriques

Consultations de la notice

105

Téléchargements de fichiers

19