Unscented Kalman Filtering on Lie Groups

Abstract : In this paper, we first consider a simple Bayesian fusion problem in a matrix Lie group, and propose to tackle it using the unscented transform. The method is then leveraged to derive two simple alternative unscented Kalman filters on Lie groups, for both cases of noisy partial measurements of the state, and full state noisy measurements of the state on the group. The general method is applied to a robot localization problem, and results based on experimental data combined with extensive Monte-Carlo simulations at various noise levels illustrate the superiority of the approach over the standard UKF.
Type de document :
Communication dans un congrès
International Conference on Intelligent Robots and Systems (IROS), Sep 2017, Vancouver, Canada. 〈http://www.iros2017.org/〉
Liste complète des métadonnées

Littérature citée [29 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01489204
Contributeur : Martin Brossard <>
Soumis le : mercredi 21 juin 2017 - 15:25:03
Dernière modification le : jeudi 31 août 2017 - 15:54:58

Fichier

submitted.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01489204, version 3

Collections

Citation

Martin Brossard, Silvère Bonnabel, Jean-Philippe Condomines. Unscented Kalman Filtering on Lie Groups. International Conference on Intelligent Robots and Systems (IROS), Sep 2017, Vancouver, Canada. 〈http://www.iros2017.org/〉. 〈hal-01489204v3〉

Partager

Métriques

Consultations de
la notice

94

Téléchargements du document

89