The p-adic Kummer-Leopoldt constant -- Normalized p-adic regulator

Abstract : The p-adic Kummer--Leopoldt constant kappa_K of a number field K is (assuming the Leopoldt conjecture) the least integer c such that for all n >> 0, any global unit of K, which is locally a p^(n+c)th power at the p-places, is necessarily the p^nth power of a global unit of K. This constant has been computed by Assim & Nguyen Quang Do using Iwasawa's techniques, after intricate studies and calculations by many authors. We give an elementary p-adic proof and an improvement of these results, then a class field theory interpretation of kappa_K. We give some applications (including generalizations of Kummer's lemma on regular pth cyclotomic fields) and a natural definition of the normalized p-adic regulator for any K and any p≥2. This is done without analytical computations, using only class field theory and especially the properties of the so-called p-torsion group T_K of Abelian p-ramification theory over K.
Type de document :
Pré-publication, Document de travail
To appear in ``International Journal of Number Theory'' (2018). 2017
Liste complète des métadonnées
Contributeur : Georges Gras <>
Soumis le : vendredi 31 mars 2017 - 14:07:48
Dernière modification le : mardi 4 avril 2017 - 01:02:34


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01444560, version 2
  • ARXIV : 1701.06857



Georges Gras. The p-adic Kummer-Leopoldt constant -- Normalized p-adic regulator. To appear in ``International Journal of Number Theory'' (2018). 2017. <hal-01444560v2>



Consultations de
la notice


Téléchargements du document