Dynamic Sum-Radii Clustering

Abstract : Real networks have in common that they evolve over time and their dynamics have a huge impact on their structure. Clustering is an efficient tool to reduce the complexity to allow representation of the data. In 2014, Eisenstat et al. introduced a dynamic version of this classic problem where the distances evolve with time and where coherence over time is enforced by introducing a cost for clients to change their assigned facility. They designed a Θ(ln n)-approximation. An O(1)-approximation for the metric case was proposed later on by An et al. (2015). Both articles aimed at minimizing the sum of all client-facility distances; however, other metrics may be more relevant. In this article we aim to minimize the sum of the radii of the clusters instead. We obtain an asymptotically optimal Θ(ln n)-approximation algorithm where n is the number of clients and show that existing algorithms from An et al. (2015) do not achieve a constant approximation in the metric variant of this setting.
Type de document :
Communication dans un congrès
WALCOM 2017, Mar 2017, Hsinchu, Taiwan. Lecture Notes in Computer Science
Liste complète des métadonnées

Contributeur : Nikola Blanchard <>
Soumis le : lundi 2 janvier 2017 - 18:27:10
Dernière modification le : jeudi 7 février 2019 - 15:46:31
Document(s) archivé(s) le : mardi 4 avril 2017 - 01:08:12


Blanchard-Schabanel walcom 201...
Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01424769, version 1


Nicolas Blanchard, Nicolas Schabanel. Dynamic Sum-Radii Clustering. WALCOM 2017, Mar 2017, Hsinchu, Taiwan. Lecture Notes in Computer Science. 〈hal-01424769〉



Consultations de la notice


Téléchargements de fichiers