MCMC design-based non-parametric regression for rare-event. Application to nested risk computations

Abstract : We design and analyze an algorithm for estimating the mean of a function of a conditional expectation, when the outer expectation is related to a rare-event. The outer expectation is evaluated through the average along the path of an ergodic Markov chain generated by a Markov chain Monte Carlo sampler. The inner conditional expectation is computed as a non-parametric regression, using a least-squares method with a general function basis and a design given by the sampled Markov chain. We establish non asymptotic bounds for the L2-empirical risks associated to this least-squares regression; this generalizes the error bounds usually obtained in the case of i.i.d. observations. Global error bounds are also derived for the nested expectation problem. Numerical results in the context of financial risk computations illustrate the performance of the algorithms.
Type de document :
Pré-publication, Document de travail
2016
Liste complète des métadonnées

Littérature citée [4 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01394833
Contributeur : Emmanuel Gobet <>
Soumis le : mercredi 9 novembre 2016 - 23:10:48
Dernière modification le : samedi 18 février 2017 - 01:14:00
Document(s) archivé(s) le : mercredi 15 mars 2017 - 04:18:45

Fichier

MCMC_regression_vfinal.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01394833, version 1

Citation

Gersende Fort, Emmanuel Gobet, Eric Moulines. MCMC design-based non-parametric regression for rare-event. Application to nested risk computations. 2016. 〈hal-01394833〉

Partager

Métriques

Consultations de la notice

410

Téléchargements de fichiers

173