CLEAR: Covariant LEAst-Square Refitting with Applications to Image Restoration

Abstract : In this paper, we propose a new framework to remove parts of the systematic errors affecting popular restoration algorithms, with a special focus for image processing tasks. Generalizing ideas that emerged for $\ell_1$ regularization, we develop an approach re-fitting the results of standard methods towards the input data. Total variation regularizations and non-local means are special cases of interest. We identify important covariant information that should be preserved by the re-fitting method, and emphasize the importance of preserving the Jacobian (w.r.t. the observed signal) of the original estimator. Then, we provide an approach that has a ``twicing'' flavor and allows re-fitting the restored signal by adding back a local affine transformation of the residual term. We illustrate the benefits of our method on numerical simulations for image restoration tasks.
Liste complète des métadonnées

Littérature citée [53 références]  Voir  Masquer  Télécharger
Contributeur : Charles-Alban Deledalle <>
Soumis le : mardi 6 décembre 2016 - 14:44:36
Dernière modification le : mercredi 20 février 2019 - 18:14:03
Document(s) archivé(s) le : mardi 21 mars 2017 - 09:50:54


Fichiers produits par l'(les) auteur(s)



Charles-Alban Deledalle, Nicolas Papadakis, Joseph Salmon, Samuel Vaiter. CLEAR: Covariant LEAst-Square Refitting with Applications to Image Restoration . SIAM Journal on Imaging Sciences, Society for Industrial and Applied Mathematics, 2017, 10 (1), pp.243-284. 〈10.1137/16M1080318〉. 〈hal-01333295v3〉



Consultations de la notice


Téléchargements de fichiers