From Hammersley's lines to Hammersley's trees

Abstract : We construct a stationary random tree, embedded in the upper half plane, with prescribed offspring distribution and whose vertices are the atoms of a unit Poisson point process. This process which we call Hammersley's tree process extends the usual Hammersley's line process. Just as Hammersley's process is related to the problem of the longest increasing subsequence, this model also has a combinatorial interpretation: it counts the number of heaps (i.e. increasing trees) required to store a random permutation. This problem was initially considered by Byers et. al (2011) and Istrate and Bonchis (2015) in the case of regular trees. We show, in particular, that the number of heaps grows logarithmically with the size of the permutation.
Type de document :
Pré-publication, Document de travail
Liste complète des métadonnées
Contributeur : Anne-Laure Basdevant <>
Soumis le : mardi 10 mai 2016 - 09:48:45
Dernière modification le : mercredi 31 mai 2017 - 01:01:03
Document(s) archivé(s) le : mardi 15 novembre 2016 - 22:53:00


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01313542, version 1
  • ARXIV : 1605.02981


Anne-Laure Basdevant, Lucas Gerin, Jean-Baptiste Gouere, Arvind Singh. From Hammersley's lines to Hammersley's trees. 2016. 〈hal-01313542〉



Consultations de
la notice


Téléchargements du document