Persistent random walks, variable length Markov chains and piecewise deterministic Markov processes *

Abstract : A classical random walk (S t , t ∈ N) is defined by S t := t n=0 X n , where (X n) are i.i.d. When the increments (X n) n∈N are a one-order Markov chain, a short memory is introduced in the dynamics of (S t). This so-called " persistent " random walk is nolonger Markovian and, under suitable conditions, the rescaled process converges towards the integrated telegraph noise (ITN) as the timescale and space-scale parameters tend to zero (see [11, 17, 18]). The ITN process is effectively non-Markovian too. The aim is to consider persistent random walks (S t) whose increments are Markov chains with variable order which can be infinite. This variable memory is enlighted by a one-to-one correspondence between (X n) and a suitable Variable Length Markov Chain (VLMC), since for a VLMC the dependency from the past can be unbounded. The key fact is to consider the non Markovian letter process (X n) as the margin of a couple (X n , M n) n≥0 where (M n) n≥0 stands for the memory of the process (X n). We prove that, under a suitable rescaling, (S n , X n , M n) converges in distribution towards a time continuous process (S 0 (t), X(t), M (t)). The process (S 0 (t)) is a semi-Markov and Piecewise Deterministic Markov Process whose paths are piecewise linear.
Type de document :
Article dans une revue
Markov Processes and Related Fields, Polymath, 2013, 19 (1), pp.1-50
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-01285853
Contributeur : Pierre Vallois <>
Soumis le : mercredi 9 mars 2016 - 18:41:30
Dernière modification le : jeudi 9 février 2017 - 15:45:53
Document(s) archivé(s) le : dimanche 13 novembre 2016 - 13:22:08

Fichier

cchv-apr13.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01285853, version 1

Citation

Peggy Cénac, Brigitte Chauvin, Samuel Herrmann, Pierre Vallois. Persistent random walks, variable length Markov chains and piecewise deterministic Markov processes *. Markov Processes and Related Fields, Polymath, 2013, 19 (1), pp.1-50. <hal-01285853>

Partager

Métriques

Consultations de
la notice

363

Téléchargements du document

38