Bienvenue sur la collection HAL du LMV.

 

Le Laboratoire de Mathématiques de Versailles est une unité mixte de recherche (UMR 8100) CNRS - Université de Versailles Saint-Quentin-en-Yvelines, située sur le campus de l’UFR des Sciences.

 

Il est composé de 4 équipes de recherche :

  • Algèbre et Géométrie
  • Analyse et Équations aux dérivées partielles
  • Probabilités et Statistiques
  • CRYPTO

 

Derniers dépôts

Nombre de documents

316

Nombre de notices

269

Mots clés

Probability tilting Fragmentation Valuations Equation de Fokker-Planck Approximate controllability Positive semigroups Growth-fragmentation equation Empirical process Optimal control Representation theory Modular representations Ginzburg–Landau equation Sensitivity analysis Extreme values Inverse problem Resolution of singularities Parametric statistics Cryptography Strong mixing Entropy Loi forte quadratique Théorie des représentations Random censoring Bivariate Brownian bridge Stationary sequences Complexity Extreme value index Controllability Canonical moments Navier–Stokes system Almost automorphic function Estimation Almost-sure central limit theorem Blowing up Evolution equation Hecke algebras Dynamical systems of the interval Absolute regularity Empirical Likelihood Diffusion in a random potential Collisions Code optimisation Fokker-Planck equation Deviation inequality Finite volume method Branching random walk Krein-Rutman theorem Density estimation Matrices aléatoires Martingale Wave equation Congruences mod ℓ Spectral measure Moderate deviations principle Empirical processes Burgers equation AG Sum rules Carleman estimate Martingales Computer algebra Strong approximation Algebraic geometry P-adic Langlands correspondence Zariski Unitary ensemble Optimization Concentration inequalities Modular representations of p-adic reductive groups Long-time behavior Polar formalism Dirichlet series Uncertainty quantification Calderón projectors Approximate Riemann solver Quiver Hecke algebras Cryptographie Concentration inequality Exponential convergence Blast actions Ergocity Anisotropy Random matrices Equilibrium measure Tail inference Almost periodic function Shallow-water equations Désingularisation Stability Algorithms Granular media equation Transmission problem Benchmarking Dissipative PDE's Invariance principle Large deviations Optimisation Martingale method Occupation measures Coupling method