A semiparametric extension of the stochastic block model for longitudinal networks: Semiparametric estimation in PPSBM

Abstract : We propose an extension of the stochastic block model for recurrent interaction events in continuous time, where every individual belongs to a latent group and conditional interactions between two individuals follow an inhomogeneous Poisson process with intensity driven by the individuals’ latent groups. We show that the model is identifiable and estimate it with a semiparametric variational expectation-maximization algorithm. We develop two versions of the method, one using a nonparametric histogram approach with an adaptive choice of the partition size, and the other using kernel intensity estimators. We select the number of latent groups by an integrated classification likelihood criterion. We demonstrate the performance of our procedure on synthetic experiments, analyse two datasets to illustrate the utility of our approach, and comment on competing methods.
Type de document :
Article dans une revue
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01245867
Contributeur : Catherine Matias <>
Soumis le : vendredi 21 juillet 2017 - 17:58:44
Dernière modification le : lundi 20 août 2018 - 12:42:52

Fichiers

dynppsbm_arxiv_V3.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

PMA | UPMC | USPC

Citation

Catherine Matias, Tabea Rebafka, Fanny Villers. A semiparametric extension of the stochastic block model for longitudinal networks: Semiparametric estimation in PPSBM. Biometrika, Oxford University Press (OUP), 2018, 105 (3), pp.665-680. 〈https://academic.oup.com/biomet/article-abstract/105/3/665/5032575?redirectedFrom=fulltext〉. 〈10.1093/biomet/asy016〉. 〈hal-01245867v3〉

Partager

Métriques

Consultations de la notice

387

Téléchargements de fichiers

198