# On the definition and the properties of the principal eigenvalue of some nonlocal operators

Abstract : In this article we study some spectral properties of the linear operator $\mathcal{L}_{\Omega}+a$ defined on the space $C(\bar\Omega)$ by : $\mathcal{L}_{\Omega}[\varphi] +a\varphi:=\int_{\Omega}K(x,y)\varphi(y)\,dy+a(x)\varphi(x)$ where $\Omega\subset \mathbb{R}^N$ is a domain, possibly unbounded, $a$ is a continuous bounded function and $K$ is a continuous, non negative kernel satisfying an integrability condition. We focus our analysis on the properties of the generalised principal eigenvalue $\lambda_p(\mathcal{L}_{\Omega}+a)$ defined by $\lambda_p(\mathcal{L}_{\Omega}+a):= \sup\{\lambda \in \mathbb{R} \,|\, \exists \varphi \in C(\bar \Omega), \varphi>0, \textit{ such that }\; \mathcal{L}_{\Omega}[\varphi] +a\varphi +\lambda\varphi \le 0 \; \text{ in }\;\Omega\}.$ We establish some new properties of this generalised principal eigenvalue $\lambda_p$. Namely, we prove the equivalence of different definitions of the principal eigenvalue. We also study the behaviour of $\lambda_p(\mathcal{L}_{\Omega}+a)$ with respect to some scaling of $K$. For kernels $K$ of the type, $K(x,y)=J(x-y)$ with $J$ a compactly supported probability density, we also establish some asymptotic properties of $\lambda_{p} \left(\mathcal{L}_{\sigma,m,\Omega} -\frac{1}{\sigma^m}+a\right)$ where $\mathcal{L}_{\sigma,m,\Omega}$ is defined by $\displaystyle{\mathcal{L}_{\sigma,m,\Omega}[\varphi]:=\frac{1}{\sigma^{2+N}}\int_{\Omega}J\left(\frac{x-y}{\sigma}\right)\varphi(y)\, dy}$. In particular, we prove that $\lim_{\sigma\to 0}\lambda_p\left(\mathcal{L}_{\sigma,2,\Omega}-\frac{1}{\sigma^{2}}+a\right)=\lambda_1\left(\frac{D_2(J)}{2N}\Delta +a\right),$ where $D_2(J):=\int_{\mathbb{R}^N}J(z)|z|^2\,dz$ and $\lambda_1$ denotes the Dirichlet principal eigenvalue of the elliptic operator. In addition, we obtain some convergence results for the corresponding eigenfunction $\varphi_{p,\sigma}$.
Keywords :
Document type :
Journal articles
Domain :

Cited literature [54 references]

https://hal.archives-ouvertes.fr/hal-01245634
Contributor : Jerome Coville <>
Submitted on : Monday, June 20, 2016 - 4:47:09 PM
Last modification on : Tuesday, August 18, 2020 - 3:34:04 PM
Long-term archiving on: : Thursday, September 22, 2016 - 6:47:29 PM

### Files

BCV-PEV-2-cor.pdf
Files produced by the author(s)

### Identifiers

• HAL Id : hal-01245634, version 2
• ARXIV : 1512.06529

### Citation

Henri Berestycki, Jérôme Coville, Hoang-Hung Vo. On the definition and the properties of the principal eigenvalue of some nonlocal operators. Journal of Functional Analysis, Elsevier, 2016, 271, pp.2701-2751. ⟨hal-01245634v2⟩

Record views