A discontinuous skeletal method for the viscosity-dependent Stokes problem

Abstract : We devise and analyze arbitrary-order nonconforming methods for the discretization of the viscosity-dependent Stokes equations on simplicial meshes. We keep track explicitly of the viscosity and aim at pressure-robust schemes that can deal with the practically relevant case of body forces with large curl-free part in a way that the discrete velocity error is not spoiled by large pressures. The method is inspired from the recent Hybrid High-Order (HHO) methods for linear elasticity. After elimination of the auxiliary variables by static condensation, the linear system to be solved involves only discrete face-based velocities, which are polynomials of degree $k \ge 0$, and cell-wise constant pressures. Our main result is a pressure-independent energy-error estimate on the velocity of order $(k+1)$. The main ingredient to achieve pressure-independence is the use of a divergence-preserving velocity reconstruction operator in the discretization of the body forces. We also prove an $L^2$-pressure estimate of order $(k+1)$ and an $L^2$-velocity estimate of order $(k+2)$, the latter under elliptic regularity. The local mass and momentum conservation properties of the discretization are also established. Finally, two-and three-dimensional numerical results are presented to support the analysis.
Type de document :
Article dans une revue
Computer Methods in Applied Mechanics and Engineering, Elsevier, 2016, 306, pp.175-195. 〈10.1016/j.cma.2016.03.033〉
Liste complète des métadonnées

Littérature citée [41 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01244387
Contributeur : Daniele Antonio Di Pietro <>
Soumis le : lundi 2 mai 2016 - 11:55:56
Dernière modification le : jeudi 13 décembre 2018 - 14:59:46

Fichier

main.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Daniele Di Pietro, Alexandre Ern, Alexander Linke, Friedhelm Schieweck. A discontinuous skeletal method for the viscosity-dependent Stokes problem. Computer Methods in Applied Mechanics and Engineering, Elsevier, 2016, 306, pp.175-195. 〈10.1016/j.cma.2016.03.033〉. 〈hal-01244387v2〉

Partager

Métriques

Consultations de la notice

336

Téléchargements de fichiers

224