Local limits of galton-watson trees conditioned on the number of protected nodes

Abstract : We consider a marking procedure of the vertices of a tree where each vertex is marked independently from the others with a probability that depends only on its out-degree. We prove that a critical Galton-Watson tree conditioned on having a large number of marked vertices converges in distribution to the associated size-biased tree. We then apply this result to give the limit in distribution of a critical Galton-Watson tree conditioned on having a large number of protected nodes.
Type de document :
Article dans une revue
Journal of Applied Probability, Applied Probability Trust, 2017, 54, pp.55-65
Liste complète des métadonnées

Littérature citée [9 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01195701
Contributeur : Romain Abraham <>
Soumis le : lundi 25 avril 2016 - 11:42:11
Dernière modification le : jeudi 3 mai 2018 - 15:32:07
Document(s) archivé(s) le : mardi 26 juillet 2016 - 11:34:45

Fichiers

protected_revised.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

  • HAL Id : hal-01195701, version 2
  • ARXIV : 1509.02350

Collections

Citation

Romain Abraham, Aymen Bouaziz, Jean-François Delmas. Local limits of galton-watson trees conditioned on the number of protected nodes. Journal of Applied Probability, Applied Probability Trust, 2017, 54, pp.55-65. 〈hal-01195701v2〉

Partager

Métriques

Consultations de la notice

266

Téléchargements de fichiers

190