On a directed variation of the 1-2-3 and 1-2 Conjectures

Abstract : In this paper, we consider the following question, which stands as a directed analogue of the well-known 1-2-3 Conjecture: Given any digraph D with no arc (u,v) verifying d+(u)=d-(v)=1, is it possible to weight the arcs of D with weights among {1,2 3} so that, for every arc (u,v) of D, the sum of incident weights outgoing from u is different from the sum of incident weights incoming to v? We answer positively to this question, and investigate digraphs for which even the weights among {1,2} are sufficient. In relation with the so-called 1-2 Conjecture, we also consider a total version of the problem, which we prove to be false. Our investigations turn to have interesting relations with open questions related to the 1-2-3 Conjecture.
Type de document :
Article dans une revue
Discrete Applied Mathematics, Elsevier, 2017, 217 (2), pp.123-131
Liste complète des métadonnées

Littérature citée [13 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01175756
Contributeur : Julien Bensmail <>
Soumis le : lundi 12 septembre 2016 - 15:29:44
Dernière modification le : jeudi 9 novembre 2017 - 01:15:38

Fichier

luczak-v2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01175756, version 3

Collections

Citation

Emma Barme, Julien Bensmail, Jakub Przybyło, Mariusz Woźniak. On a directed variation of the 1-2-3 and 1-2 Conjectures. Discrete Applied Mathematics, Elsevier, 2017, 217 (2), pp.123-131. 〈hal-01175756v3〉

Partager

Métriques

Consultations de la notice

116

Téléchargements de fichiers

57