ON SUMS OF EIGENVALUES OF ELLIPTIC OPERATORS ON MANIFOLDS

Abstract : We use the averaged variational principle introduced in a recent article on graph spectra [7] to obtain upper bounds for sums of eigenvalues of several partial differential operators of interest in geometric analysis, which are analogues of Kröger 's bound for Neumann spectra of Laplacians on Euclidean domains [12]. Among the operators we consider are the Laplace-Beltrami operator on compact subdomains of manifolds. These estimates become more explicit and asymptotically sharp when the manifold is conformal to homogeneous spaces (here extending a result of Strichartz [21] with a simplified proof). In addition we obtain results for the Witten Laplacian on the same sorts of domains and for Schrödinger operators with confining potentials on infinite Euclidean domains. Our bounds have the sharp asymptotic form expected from the Weyl law or classical phase-space analysis. Similarly sharp bounds for the trace of the heat kernel follow as corollaries.
Type de document :
Article dans une revue
Journal of Spectral Theory, European Mathematical Society, 2016
Liste complète des métadonnées

Littérature citée [26 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01174814
Contributeur : Ahmad El Soufi <>
Soumis le : mercredi 16 décembre 2015 - 10:55:11
Dernière modification le : vendredi 31 août 2018 - 01:09:17
Document(s) archivé(s) le : samedi 29 avril 2017 - 16:43:11

Fichiers

EHIS_averaging12DecREV.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01174814, version 2
  • ARXIV : 1507.02632

Collections

Citation

Ahmad El Soufi, Evans Harrell, Said Ilias, Joachim Stubbe. ON SUMS OF EIGENVALUES OF ELLIPTIC OPERATORS ON MANIFOLDS. Journal of Spectral Theory, European Mathematical Society, 2016. 〈hal-01174814v2〉

Partager

Métriques

Consultations de la notice

246

Téléchargements de fichiers

252