Anomaly Detection Based on Confidence Intervals Using SOM with an Application to Health Monitoring

Abstract : We develop an application of SOM for the task of anomaly detection and visualization. To remove the effect of exogenous independent variables, we use a correction model which is more accurate than the usual one, since we apply different linear models in each cluster of context. We do not assume any particular probability distribution of the data and the detection method is based on the distance of new data to the Kohonen map learned with corrected healthy data. We apply the proposed method to the detection of aircraft engine anomalies.
Type de document :
Chapitre d'ouvrage
T. Villmann, F.M. Schleif, M. Kaden, M. Lange. Advances in Self-Organizing Maps and Learning Vector Quantization Proceedings of th 10th International Workshop WSOM 2014, 295, Springer, pp.145-155, 2014, AISC,, <10.1007/978-3-319-07695-9_14>
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-01169573
Contributeur : Marie Cottrell <>
Soumis le : lundi 29 juin 2015 - 16:47:17
Dernière modification le : dimanche 28 mai 2017 - 16:18:33
Document(s) archivé(s) le : mercredi 16 septembre 2015 - 06:27:01

Fichiers

wsom2014.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Anastasios Bellas, Charles Bouveyron, Marie Cottrell, Jerome Lacaille. Anomaly Detection Based on Confidence Intervals Using SOM with an Application to Health Monitoring. T. Villmann, F.M. Schleif, M. Kaden, M. Lange. Advances in Self-Organizing Maps and Learning Vector Quantization Proceedings of th 10th International Workshop WSOM 2014, 295, Springer, pp.145-155, 2014, AISC,, <10.1007/978-3-319-07695-9_14>. <hal-01169573>

Partager

Métriques

Consultations de
la notice

129

Téléchargements du document

114