Trinocular Geometry Revisited

Abstract : When do the visual rays associated with triplets of point correspondences converge, that is, intersect in a common point? Classical models of trinocular geometry based on the fundamental matrices and trifocal tensor associated with the corresponding cameras only provide partial answers to this fundamental question, in large part because of underlying, but seldom explicit, general configuration assumptions. This paper uses elementary tools from projective line geometry to provide necessary and sufficient geometric and analytical conditions for convergence in terms of transversals to triplets of visual rays, without any such assumptions. In turn, this yields a novel and simple minimal parameterization of trinocular geometry for cameras with non-collinear or collinear pinholes, which can be used to construct a practical and efficient method for trinocular geometry parameter estimation. We present numerical experiments using synthetic and real data.
Type de document :
Article dans une revue
International Journal on Computer Vision (IJCV), Springer, 2016
Liste complète des métadonnées

Littérature citée [23 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01152348
Contributeur : Matthew Trager <>
Soumis le : lundi 15 février 2016 - 15:18:24
Dernière modification le : jeudi 26 avril 2018 - 10:29:12

Fichier

ijcv2016.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01152348, version 3

Collections

Citation

Matthew Trager, Jean Ponce, Martial Hebert. Trinocular Geometry Revisited. International Journal on Computer Vision (IJCV), Springer, 2016. 〈hal-01152348v3〉

Partager

Métriques

Consultations de la notice

805

Téléchargements de fichiers

407