Local Error Estimates of the Finite Element Method for an Elliptic Problem with a Dirac Source Term

Abstract : The solutions of elliptic problems with a Dirac measure in right-hand side are not H1 and therefore the convergence of the finite element solutions is suboptimal. Graded meshes are standard remedy to recover quasi-optimality, namely optimality up to a log-factor, for low order finite elements in L2-norm. Optimal (or quasi-optimal for the lowest order case) convergence has been shown in L2-seminorm, where the L2-seminorm is defined as the L2-norm on a subdomain which excludes the singularity. Here we show a quasi-optimal convergence for the Hs-seminorm, s > 0, and an optimal convergence in H1-seminorm for the lowest order case, on a family of quasi- uniform meshes in dimension 2. This question is motivated by the use of the Dirac measure as a reduced model in physical problems, and a high accuracy at the singularity of the finite element method is not required. Our results are obtained using local Nitsche and Schatz-type error estimates, a weak version of Aubin-Nitsche duality lemma and a discrete inf-sup condition. These theoretical results are confirmed by numerical illustrations.
Type de document :
Pré-publication, Document de travail
2015
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01150745
Contributeur : Loïc Lacouture <>
Soumis le : samedi 6 février 2016 - 14:26:32
Dernière modification le : samedi 18 février 2017 - 01:20:13

Fichier

BDLM-16.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01150745, version 5

Citation

Silvia Bertoluzza, Astrid Decoene, Loïc Lacouture, Sébastien Martin. Local Error Estimates of the Finite Element Method for an Elliptic Problem with a Dirac Source Term. 2015. <hal-01150745v5>

Partager

Métriques

Consultations de
la notice

66

Téléchargements du document

61