Persistent Random Walks. I. Recurrence Versus Transience

Abstract : We consider a walker on the line that at each step keeps the same direction with a probability which depends on the time already spent in the direction the walker is currently moving. These walks with memories of variable length can be seen as generalizations of directionally reinforced random walks introduced in Mauldin et al. (Adv Math 117(2):239–252, 1996). We give a complete and usable characterization of the recurrence or transience in terms of the probabilities to switch the direction and we formulate some laws of large numbers. The most fruitful situation emerges when the running times both have an infinite mean. In that case, these properties are related to the behaviour of some embedded random walk with an undefined drift so that these features depend on the asymptotics of the distribution tails related to the persistence times. In the other case, the criterion reduces to a null-drift condition. Finally, we deduce some criteria for a wider class of persistent random walks whose increments are encoded by a variable length Markov chain having—in full generality—no renewal pattern in such a way that their study does not reduce to a skeleton RW as for the original model.
Type de document :
Article dans une revue
Journal of Theoretical Probability, Springer, 2018, 31 (1), pp.232-243. 〈10.1007/s10959-016-0714-4〉
Liste complète des métadonnées

Littérature citée [38 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01135794
Contributeur : Peggy Cenac <>
Soumis le : dimanche 13 septembre 2015 - 15:41:12
Dernière modification le : lundi 19 mars 2018 - 11:01:48
Document(s) archivé(s) le : mercredi 26 avril 2017 - 18:44:19

Fichiers

vnby-trans-rec.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité - Pas d'utilisation commerciale 4.0 International License

Identifiants

Citation

Peggy Cénac, Arnaud Le Ny, Basile De Loynes, Yoann Offret. Persistent Random Walks. I. Recurrence Versus Transience. Journal of Theoretical Probability, Springer, 2018, 31 (1), pp.232-243. 〈10.1007/s10959-016-0714-4〉. 〈hal-01135794v2〉

Partager

Métriques

Consultations de la notice

371

Téléchargements de fichiers

94