Orbital stability: analysis meets geometry

S. De Bievre 1, 2 François Genoud 3 Simona Rota Nodari 2
1 MEPHYSTO - Quantitative methods for stochastic models in physics
LPP - Laboratoire Paul Painlevé - UMR 8524, ULB - Université Libre de Bruxelles [Bruxelles], Inria Lille - Nord Europe
Abstract : We present an introduction to the orbital stability of relative equilibria of Hamiltonian dynamical systems on (finite and infinite dimensional) Banach spaces. A convenient formulation of the theory of Hamiltonian dynamics with symmetry and the corresponding momentum maps is proposed that allows us to highlight the interplay between (symplectic) geometry and (functional) analysis in the proofs of orbital stability of relative equilibria via the so-called energy-momentum method. The theory is illustrated with examples from finite dimensional systems, as well as from Hamiltonian PDE's, such as solitons, standing and plane waves for the nonlinear Schrödinger equation, for the wave equation, and for the Manakov system.
Type de document :
Chapitre d'ouvrage
Nonlinear Optical and Atomic Systems, 2146, pp.147-273, 2015, Lecture Notes in Mathematics, 〈10.1007/978-3-319-19015-0_3〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01028168
Contributeur : Simona Rota Nodari <>
Soumis le : lundi 5 janvier 2015 - 15:30:09
Dernière modification le : mardi 3 juillet 2018 - 11:49:13
Document(s) archivé(s) le : lundi 6 avril 2015 - 11:35:11

Fichiers

orbital_stability_hal.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

S. De Bievre, François Genoud, Simona Rota Nodari. Orbital stability: analysis meets geometry. Nonlinear Optical and Atomic Systems, 2146, pp.147-273, 2015, Lecture Notes in Mathematics, 〈10.1007/978-3-319-19015-0_3〉. 〈hal-01028168v3〉

Partager

Métriques

Consultations de la notice

299

Téléchargements de fichiers

198