The Biequivalence of Locally Cartesian Closed Categories and Martin-Löf Type Theories

Abstract : Seely's paper Locally cartesian closed categories and type theory contains a well-known result in categorical type theory: that the category of locally cartesian closed categories is equivalent to the category of Martin-Löf type theories with Π, Σ, and extensional identity types. However, Seely's proof relies on the problematic assumption that substitution in types can be interpreted by pullbacks. Here we prove a corrected version of Seely's theorem: that the Bénabou-Hofmann interpretation of Martin-Löf type theory in locally cartesian closed categories yields a biequivalence of 2-categories. To facilitate the technical development we employ categories with families as a substitute for syntactic Martin-Löf type theories. As a second result we prove that if we remove Π-types the resulting categories with families with only Σ and extensional identity types are biequivalent to left exact categories.
Type de document :
Article dans une revue
Mathematical Structures in Computer Science, Cambridge University Press (CUP), 2014, 24 (05), pp.e240501. 〈10.1017/S0960129513000881〉
Liste complète des métadonnées

Littérature citée [19 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00990027
Contributeur : Pierre Clairambault <>
Soumis le : lundi 12 mai 2014 - 21:41:27
Dernière modification le : mercredi 3 octobre 2018 - 13:21:04
Document(s) archivé(s) le : mardi 12 août 2014 - 12:20:39

Fichier

mainmscsrevised.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Pierre Clairambault, Peter Dybjer. The Biequivalence of Locally Cartesian Closed Categories and Martin-Löf Type Theories. Mathematical Structures in Computer Science, Cambridge University Press (CUP), 2014, 24 (05), pp.e240501. 〈10.1017/S0960129513000881〉. 〈hal-00990027〉

Partager

Métriques

Consultations de la notice

361

Téléchargements de fichiers

120