A three-dimensional conservative coupling method between an inviscid compressible flow and a moving rigid solid

Abstract : We present a conservative method for the three-dimensional coupling between an inviscid compressible flow and a moving rigid solid. We consider an inviscid Euler fluid in conservative form discretized using a high-order monotonicity-preserving Finite Volume method with a directional operator splitting. An Immersed Boundary technique is employed through the modification of the Finite Volume fluxes in the vicinity of the solid. The method yields exact conservation of mass, momentum and energy of the system, and also exhibits important consistency properties, such as conservation of uniform movement of both fluid and solid as well as the absence of numerical roughness on a straight boundary. The coupling scheme evaluates the fluxes on the fluid side and the forces and torques on the solid side only once every time step, ensuring the computational efficiency of the coupling. We present numerical results assessing the robustness of the method in the case of rigid solids with large displacements.
Type de document :
Article dans une revue
SIAM Journal on Scientific Computing, Society for Industrial and Applied Mathematics, 2015, 37, pp.884-909
Liste complète des métadonnées

Littérature citée [29 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00974602
Contributeur : Maria Adela Puscas <>
Soumis le : dimanche 1 février 2015 - 13:29:57
Dernière modification le : mardi 12 février 2019 - 01:30:27
Document(s) archivé(s) le : mercredi 27 mai 2015 - 15:21:59

Fichier

rigide_depot_hal_v2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00974602, version 2

Citation

Maria Adela Puscas, Laurent Monasse. A three-dimensional conservative coupling method between an inviscid compressible flow and a moving rigid solid. SIAM Journal on Scientific Computing, Society for Industrial and Applied Mathematics, 2015, 37, pp.884-909. 〈hal-00974602v2〉

Partager

Métriques

Consultations de la notice

384

Téléchargements de fichiers

163