Balanced simplices

Abstract : An additive cellular automaton is a linear map on the set of infinite multidimensional arrays of elements in a finite cyclic group $\mathbb{Z}/m\mathbb{Z}$. In this paper, we consider simplices appearing in the orbits generated from arithmetic arrays by additive cellular automata. We prove that they are a source of balanced simplices, that are simplices containing all the elements of $\mathbb{Z}/m\mathbb{Z}$ with the same multiplicity. For any additive cellular automaton of dimension $1$ or higher, the existence of infinitely many balanced simplices of $\mathbb{Z}/m\mathbb{Z}$ appearing in such orbits is shown, and this, for an infinite number of values $m$. The special case of the Pascal cellular automata, the cellular automata generating the Pascal simplices, that are a generalization of the Pascal triangle into arbitrary dimension, is studied in detail.
Type de document :
Article dans une revue
Advances in Applied Mathematics, Elsevier, 2015, 62, pp.74-117. <10.1016/j.aam.2014.09.007>
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-00949618
Contributeur : Jonathan Chappelon <>
Soumis le : mercredi 30 mars 2016 - 21:36:17
Dernière modification le : jeudi 6 juillet 2017 - 10:48:05
Document(s) archivé(s) le : lundi 14 novembre 2016 - 10:04:55

Fichiers

Balanced_Simplices_Final_Versi...
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Jonathan Chappelon. Balanced simplices. Advances in Applied Mathematics, Elsevier, 2015, 62, pp.74-117. <10.1016/j.aam.2014.09.007>. <hal-00949618v2>

Partager

Métriques

Consultations de
la notice

54

Téléchargements du document

24