Proximal Operator of Quotient Functions with Application to a Feasibility Problem in Query Optimization

Abstract : In this paper we determine the proximity functions of the sum and the maximum of componentwise (reciprocal) quotients of positive vectors. For the sum of quotients, denoted by $Q_1$, the proximity function is just a componentwise shrinkage function which we call q-shrinkage. This is similar to the proximity function of the ℓ1-norm which is given by componentwise soft shrinkage. For the maximum of quotients $Q_∞$, the proximal function can be computed by first order primal dual methods involving epigraphical projections. The proximity functions of $Q_ν$ , $ν = 1,∞$ are applied to solve convex problems of the form $argmin_x Q _ν ( Ax/b )$ subject to $x ≥ 0$, $1^\top x ≤ 1$. Such problems are of interest in selectivity estimation for cost-based query optimizers in database management systems.
Type de document :
Pré-publication, Document de travail
2015
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00942453
Contributeur : Audrey Repetti <>
Soumis le : samedi 21 février 2015 - 18:37:21
Dernière modification le : lundi 21 mars 2016 - 17:39:00

Fichier

q_functions.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Guido Moerkotte, Martin Montag, Audrey Repetti, Gabriele Steidl. Proximal Operator of Quotient Functions with Application to a Feasibility Problem in Query Optimization. 2015. <hal-00942453v2>

Partager

Métriques

Consultations de
la notice

241

Téléchargements du document

193