Variable Clustering in High-Dimensional Linear Regression: The R Package clere

Loïc Yengo 1, 2 Julien Jacques 3, 1, 4 Christophe Biernacki 1, 4 Mickael Canouil 2
1 MODAL - MOdel for Data Analysis and Learning
LPP - Laboratoire Paul Painlevé - UMR 8524, Inria Lille - Nord Europe, CERIM - Santé publique : épidémiologie et qualité des soins-EA 2694, Polytech Lille, Université de Lille 1, IUT’A
Abstract : Dimension reduction is one of the biggest challenge in high-dimensional regression models. We recently introduced a new methodology based on variable clustering as a means to reduce dimensionality. We introduce here an R package that implements two enhancements regarding the latter methodology. First, an improvement in computational time for estimating the parameters is presented. As a second enhancement, users of our method are now allowed to constrain the model to identify variables with weak or no effect on the response. An overview of the package functionalities as well as examples to run an analysis are described. Numerical experiments on simulated and real data were performed to illustrate the gain of computational time and the good predictive performance of our method compared to standard dimension reduction approaches.
Type de document :
Article dans une revue
The R Journal, R Foundation for Statistical Computing, 2016, 8 (1), pp.92-106
Liste complète des métadonnées

Littérature citée [23 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00940929
Contributeur : Julien Jacques <>
Soumis le : lundi 3 février 2014 - 10:45:04
Dernière modification le : jeudi 20 octobre 2016 - 01:04:40
Document(s) archivé(s) le : dimanche 9 avril 2017 - 05:53:00

Fichier

Yengo_et_al_2014_manuscript.pd...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00940929, version 1

Collections

Citation

Loïc Yengo, Julien Jacques, Christophe Biernacki, Mickael Canouil. Variable Clustering in High-Dimensional Linear Regression: The R Package clere. The R Journal, R Foundation for Statistical Computing, 2016, 8 (1), pp.92-106. 〈hal-00940929〉

Partager

Métriques

Consultations de la notice

512

Téléchargements de fichiers

244