Diverse Near Neighbor Problem

Abstract : Motivated by the recent research on diversity-aware search, we investigate the k-diverse near neighbor reporting problem. The problem is defined as follows: given a query point q, report the maximum diversity set S of k points in the ball of radius r around q. The diversity of a set S is measured by the minimum distance between any pair of points in S (the higher, the better). We present two approximation algorithms for the case where the points live in a d-dimensional Hamming space. Our algorithms guarantee query times that are sub-linear in n and only polynomial in the diversity parameter k, as well as the dimension d. For low values of k, our algorithms achieve sub-linear query times even if the number of points within distance r from a query q is linear in n. To the best of our knowledge, these are the first known algorithms of this type that offer provable guarantees.
Type de document :
Communication dans un congrès
Guilherme D. da Fonseca, Thomas Lewiner, Luis Peñaranda, Timothy Chan, Rolf Klein. SoCG 2013 - Symposium on Computational Geometry, Jun 2013, Rio de Janeiro, Brazil. ACM, pp.207-214, 2013, 〈10.1145/2462356.2462401〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00923544
Contributeur : Valérie Samper <>
Soumis le : lundi 6 janvier 2014 - 17:59:27
Dernière modification le : mardi 28 octobre 2014 - 18:33:48

Identifiants

Collections

Citation

Sofiane Abbar, Sihem Amer-Yahia, Piotr Indyk, Sepideh Mahabadi, Kasturi Varadarajan. Diverse Near Neighbor Problem. Guilherme D. da Fonseca, Thomas Lewiner, Luis Peñaranda, Timothy Chan, Rolf Klein. SoCG 2013 - Symposium on Computational Geometry, Jun 2013, Rio de Janeiro, Brazil. ACM, pp.207-214, 2013, 〈10.1145/2462356.2462401〉. 〈hal-00923544〉

Partager

Métriques

Consultations de la notice

246