On Dwork's p-adic formal congruences theorem and hypergeometric mirror maps

Abstract : Using Dwork's theory, we prove a broad generalisation of his famous p-adic formal congruences theorem. This enables us to prove certain p-adic congruences for the generalized hypergeometric series with rational parameters; in particular, they hold for any prime number p and not only for almost all primes. Along the way, using Christol's functions, we provide an explicit formula for the ''Eisenstein constant'' of any globally bounded hypergeometric series with rational parameters. As an application of these results, we obtain an arithmetic statement of a new type concerning the integrality of Taylor coefficients of the associated mirror maps. It essentially contains all the similar univariate integrality results in the litterature.
Type de document :
Ouvrage (y compris édition critique et traduction)
246 (1163), 2017, Memoirs of the American Mathematical Society, 978-1-4704-2300-1. 〈10.1090/memo/1163〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00864745
Contributeur : Tanguy Rivoal <>
Soumis le : lundi 23 septembre 2013 - 14:31:27
Dernière modification le : lundi 14 janvier 2019 - 16:46:55
Document(s) archivé(s) le : vendredi 7 avril 2017 - 01:37:22

Fichiers

mirrorfinal2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Eric Delaygue, Tanguy Rivoal, Julien Roques. On Dwork's p-adic formal congruences theorem and hypergeometric mirror maps. 246 (1163), 2017, Memoirs of the American Mathematical Society, 978-1-4704-2300-1. 〈10.1090/memo/1163〉. 〈hal-00864745v2〉

Partager

Métriques

Consultations de la notice

430

Téléchargements de fichiers

95