A human proof of Gessel's lattice path conjecture

Alin Bostan 1 Irina Kurkova 2 Kilian Raschel 3, *
* Auteur correspondant
2 Modélisation stochastique
LPMA - Laboratoire de Probabilités et Modèles Aléatoires
Abstract : Gessel walks are lattice paths confined to the quarter plane that start at the origin and consist of unit steps going either West, East, South-West or North-East. In 2001, Ira Gessel conjectured a nice closed-form expression for the number of Gessel walks ending at the origin. In 2008, Kauers, Koutschan and Zeilberger gave a computer-aided proof of this conjecture. The same year, Bostan and Kauers showed, again using computer algebra tools, that the complete generating function of Gessel walks is algebraic. In this article we propose the first ``human proofs'' of these results. They are derived from a new expression for the generating function of Gessel walks in terms of Weierstrass zeta functions.
Type de document :
Article dans une revue
Transactions of the American Mathematical Society, American Mathematical Society, 2016, 369 (2, February 2017), pp.1365-1393 <http://www.ams.org/journals/tran/0000-000-00/S0002-9947-2016-06804-X/>
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-00858083
Contributeur : Kilian Raschel <>
Soumis le : vendredi 13 février 2015 - 09:32:09
Dernière modification le : lundi 29 mai 2017 - 14:22:53
Document(s) archivé(s) le : dimanche 16 avril 2017 - 08:29:24

Fichier

BoKuRa13-rev[3].pdf
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

  • HAL Id : hal-00858083, version 3
  • ARXIV : 1309.1023

Citation

Alin Bostan, Irina Kurkova, Kilian Raschel. A human proof of Gessel's lattice path conjecture. Transactions of the American Mathematical Society, American Mathematical Society, 2016, 369 (2, February 2017), pp.1365-1393 <http://www.ams.org/journals/tran/0000-000-00/S0002-9947-2016-06804-X/>. <hal-00858083v3>

Partager

Métriques

Consultations de
la notice

268

Téléchargements du document

104