Revisiting the Minimum Breakpoint Linearization Problem Theoretical Computer Science

Abstract : The gene order on a chromosome is a necessary data for most comparative genomics studies, but in many cases only partial orders can be obtained by cur- rent genetic mapping techniques. The Minimum Breakpoint Linearization Problem aims at constructing a total order from this partial knowledge, such that the breakpoint distance to a reference genome is minimized. In this paper, we first expose a flaw in two algorithms formerly known for this problem [6, 4]. We then present a new modeling for this problem, and use it to design three approximation algorithms, with ratios resp. O(log(k) log log(k)), O(log2 (|X|)) and m2 + 4m − 4, where k is the optimal breakpoint distance we look for, |X| is upper bounded by the number of pair of genes for which the partial order is in contradiction with the reference genome, and m is the number of genetic maps used to create the input partial order.
Type de document :
Article dans une revue
Theoretical Computer Science, Elsevier, 2013, 494, pp.122-133
Liste complète des métadonnées

Littérature citée [10 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00826880
Contributeur : Guillaume Fertin <>
Soumis le : mardi 28 mai 2013 - 14:50:00
Dernière modification le : jeudi 17 mai 2018 - 12:52:03
Document(s) archivé(s) le : mardi 3 septembre 2013 - 09:52:18

Fichier

TCS-TAMC09.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00826880, version 1

Collections

Citation

Laurent Bulteau, Guillaume Fertin, Irena Rusu. Revisiting the Minimum Breakpoint Linearization Problem Theoretical Computer Science. Theoretical Computer Science, Elsevier, 2013, 494, pp.122-133. 〈hal-00826880〉

Partager

Métriques

Consultations de la notice

244

Téléchargements de fichiers

102